metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Youfu Zhou, Xing Li, Yanqing Xu, Rong Cao and Maochun Hong*

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China

Correspondence e-mail: hmc@ms.fjirsm.ac.cn

Key indicators

Single-crystal X-ray study T = 293 KMean $\sigma(\text{C-C}) = 0.007 \text{ Å}$ R factor = 0.058 wR factor = 0.142 Data-to-parameter ratio = 12.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Tris(2,2'-bipyridine)nickel(II) diperchlorate

The title compound, $[Ni(C_{10}H_8N_2)_3](ClO_4)_2$, is built up of monomeric $[Ni(bpy)_3]^{2+}$ cations (bpy = 2,2'-bipyridine) and two perchlorate anions. The asymmetric unit is one half cation and one anion, a twofold rotation axis passing through the Ni atom and bisecting one bpy ligand. The Ni^{II} ion is coordinated by six N atoms from three chelating bpy ligands in a highly distorted octahedral geometry, with Ni–N bond lengths ranging from 2.071 (4) to 2.091 (4) Å.

Comment

When trying to prepare the nickel(II) complex containing 2,2'bipyridine and 1,3,5-benzenetricarboxylate ligands by hydrothermal reaction, we did not obtain the expected compound but, instead, red prismatic crystals of tris(2,2'-bipyridine)nickel(II) diperchlorate, (I), grew from the above solution on slow evaporation. The new complex has been characterized by elemental analysis and single-crystal diffraction analysis.

The title compound crystallizes in space group C2/c and consists of monomeric [Ni(bpy)₃]²⁺ cations and perchlorate anions, being isostructural with the zinc(II) complex (Chen et al., 1995a,b). The asymmetric unit is one half cation and one anion, a twofold rotation axis passing through the Ni atom and bisecting one bpy ligand. The nickel(II) ion is coordinated by six N atoms from three chelating bpy ligands in a highly distorted octahedral geometry (Fig. 1), with Ni-N bond lengths ranging from 2.071 (4) to 2.091 (4) Å, shorter than those [2.135 (2)-2.172 (3) Å] of the isomorphous Zn^{II} compound; this may be attributed to the smaller ionic radius of the Ni²⁺ cation. As in the Zn^{II} isomorph, each pair of pyridine rings in the three bpy ligands are non-coplanar, with a dihedral angle between each pair ranging from ca 7.2 to 18.3°, larger than in the Zn^{II} isomorph. The distorted N-Mn-N angles resulting from the chelating bpy ligands range from 78.6 (1) to 79.1 (2)°, larger than those of the Zn^{II} isomorph $[75.8 (1)-77.2 (1)^{\circ}]$. The crystal structure of the title compound is composed of two-dimensional layers parallel to the *ab* plane. The molecular packing reveals the occurrence of pillars of cations and anions parallel to the c axis (Fig. 2).

Received 15 April 2003 Accepted 17 April 2003 Online 30 April 2003

© 2003 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

View of the cation and anion of the title complex, showing the atomlabelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Experimental

The hydrothermal reaction of nickel perchlorate (0.06 g, ca 0.20 mmol), 2,2'-bipyridine (0.05 g, 0.32 mmol) and 1,3,5-benzenetricarboxylic acid (0.05 g, 0.24 mmol) in a molar ratio of ca 2:3:2, at 433 K for 4 d, gave, after cooling to room temperature at 5 K h^{-1} , a pale green solution. Red prismatic crystals of [Ni(bpy)₃](ClO₄)₂ were grown from the solution by slow evaporation for about four days, and isolated in 54% yield (based on Ni). Elemental analysis calculated for C₃₀H₂₄Cl₂N₆NiO₈: C 49.62, H 3.33, N 11.57%; found: C 49.51, H 3.10, N 11.39%.

Crystal data

$[Ni(C_{10}H_8N_2)_3](ClO_4)_2$	$D_x = 1.589 \text{ Mg m}^{-3}$
$M_r = 726.16$	Mo $K\alpha$ radiation
Monoclinic, $C2/c$	Cell parameters from 2134
a = 17.502 (2) Å	reflections
b = 10.777 (1) Å	$\theta = 2.2-25.0^{\circ}$
c = 16.092 (2) Å	$\mu = 0.88 \text{ mm}^{-1}$
$\beta = 90.959 \ (2)^{\circ}$	T = 293 (2) K
V = 3034.8 (6) Å ³	Prism, red
Z = 4	$0.46\times0.34\times0.26$ mm
Data collection	
Siemens SMART CCD	2637 independent reflections
diffractometer	2026 reflections with $I > 2\sigma(I)$
ω scans	$R_{\rm int} = 0.033$
Absorption correction: multi-scan	$\theta_{\rm max} = 25.0^{\circ}$
(SADABS; Sheldrick, 1996)	$h = -20 \rightarrow 12$
$T_{\rm min} = 0.621, T_{\rm max} = 0.796$	$k = -12 \rightarrow 8$
4475 measured reflections	$l = -19 \rightarrow 19$
Refinement	
2	

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.058$ $wR(F^2) = 0.142$ S = 1.082637 reflections 213 parameters H-atom parameters constrained

 $I > 2\sigma(I)$ $w = 1/[\sigma^2(F_o^2) + (0.0464P)^2]$ + 12.8239P]

where $P = (F_o^2)^2$ $+2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 0.40 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.37 \text{ e } \text{\AA}^{-3}$

Figure 2

Packing of the title complex, viewed along the c axis. H atoms have been omitted for clarity.

Table 1

Selected geometric parameters (Å, °).

Ni-N3	2.071 (3)	C1-N1	1.342 (6)
Ni-N2	2.085 (3)	C5-N1	1.348 (5)
Ni-N1	2.090 (3)	C6-N2	1.345 (5)
Cl-O4	1.373 (4)	C10-N2	1.343 (6)
Cl-O1	1.381 (5)	C11-N3	1.347 (5)
Cl-O3	1.417 (4)	C15-N3	1.350 (6)
Cl-O2	1.429 (5)		
N3-Ni-N3 ⁱ	79.1 (2)	N3 ⁱ -Ni-N1	93.0 (1)
N3-Ni-N2	172.1 (1)	N2-Ni-N1	78.5 (1)
N3 ⁱ -Ni-N2	97.1 (1)	N2 ⁱ -Ni-N1	94.2 (1)
N2-Ni-N2 ⁱ	87.5 (2)	$N1 - Ni - N1^{i}$	170.1 (2)
N3-Ni-N1	94.7 (1)		. ,

Symmetry code: (i) $1 - x, y, \frac{1}{2} - z$.

All H atoms were located in a difference Fourier map but were introduced in idealized positions and treated as riding. All H atoms were located in a difference Fourier map but were introduced in idealized positions (C-H = 0.93 Å) and treated as riding, with displacement parameters fixed at 120% of those of their parent atoms.

Data collection: SMART (Siemens, 1996); cell refinement: SMART; data reduction: SAINT (Siemens, 1994); program(s) used to solve structure: SHELXTL (Siemens, 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLUTON (Spek, 2003) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

This work was supported by grants of the National Natural Science Foundation of China, the Chinese Academy of Science and the Natural Science Foundation of Fujian Province.

References

Chen, X., Wang, R. & Yu, X. (1995a). Acta Cryst. C51, 1545-1547.

- Chen, X., Wang, R. & Xu Z. (1995b). Acta Cryst. C51, 820-822.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXL97. Release 97-2). University of Göttingen, Germany.
- Siemens (1994). SAINT and SHELXTL (Version 5). Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Siemens (1996). SMART. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.